
Abstract - We have designed and implemented a prototype 
virtual environment for medical training in neonatal resu-
scitation. The central element of this environment is the dynamic 
virtual model (avatar) of a new-born child, built using VRML 
and Java. Physiological variables relevant for training were 
chosen to be represented through the avatar: heart rate, 
respiration rate, skin colour and activity level (such as 
movement and crying). Implementation mechanisms of 
presenting these vital signs on the virtual baby with animation 
and sound are described in this paper. 

We are using time-dependent description of basic events to 
specify scenarios according to which the condition of a baby is 
changing. Sets of scenarios are then coupled to actions 
performed by a student during training. Such approach for all 
relevant variables had seemed good at first, but it soon became 
impractical and hard to follow due to separate treatment of 
variables. Therefore an attempt to create a simplified, easier 
controllable model with interdependent variables is being under 
development. This paper reports on current implementation as 
well as on the explored ideas for the future. 
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I. INTRODUCTION 

In our Virtual Delivery Room project (VIDERO)[1] we 
are developing a multi-user virtual environment for training 
of medical students in neonatal resuscitation. It's motivation 
and background are presented in Section II. 

 Sections III and IV are devoted to the virtual baby - the 
represented variables are listed, how their trajectories are 
described in scenarios with discrete events, and how we 
model the relations of these variables to the overall condition 
of the baby is explained. 

 In the fifth Section we then briefly present the program, 
which a medical specialist can use to tune and validate the 
implemented behaviour of a virtual baby. 

II. SIMULATION TRAINING IN MEDICINE 

Simulation training for health care professionals can be 
provided by simulated exercises. Good example of such 
training is the system of crisis management training in 
neonatal resuscitation[2] introduced by L. Halamek, D. M. 
Gaba and their team at the Veterans Affairs Palo Alto Health 
Care System[3]. It is necessary to face medical students with 
simulated situations, because some serious conditions are 
potentially very rare to encounter during practical placements 
of medical students. So-called 'learning by accident' 
phenomena can be avoided using medical simulators. 

'Real-world' simulators can provide a significant degree of 
immersion and a very realistic experience, but the price is 
high: special training facilities with instruments, monitors, 
mannequins, and skilled senior staff to control and supervise 
the training are necessary. With the development of virtual 
reality (VR) technologies a strong trend is present toward 
implementing such simulators completely or partly as virtual 
environments. In fact, we believe that due to all the 
complexity of medical knowledge today a complete four 
stage learning path should be adopted as shown in Fig.1. 
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Fig.1: Learning medicine today should be a step-by-step process. 

For computer simulations standalone programs with built-
in scenarios and predefined training tasks can be used, 
although only training involving a mentor can usually provide 
higher complexity training and realistic assessment. 

With this in mind we designed our virtual environment as 
a multi-user collaborative training tool (Fig. 2), where a 
trainee and a mentor (as well as possible observers) share the 
same virtual space. 

Student MentorComputer network

 

Fig. 2: Training in the multi-user virtual environment. 
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III. REPRESENTATION AND CONTROL OF A VIRTUAL BABY 

Relevant and Observable State Variables (OSVs) 

Together with medical doctors and according to the 
official training guidelines[1] we first identified all relevant 
parameters, which should be included in the model of a 
virtual new-born. Out of this variables, listed in the left 
column of Table I, we then compiled vital signs, which can 
be appropriately rendered: beating of the heart, respiration, 
skin colour and activity as movement and sounds (sighs, 
crying). Each of these signs is linked to its own so-called 
observable state variable (OSV), each having its range of 
values: heart rate (HR) from 0-200 beats/min; respiration rate 
(RR) from 0-80 breaths/min; colour (Col) and activity (Mov) 
are normalised to [0,1] between both extreme levels. 

TABLE I 
RELEVANT AND OBSERVABLE STATE VARIABLES OF THE VIRTUAL BABY 

Relevant State Variables OSV Observability / Representation 
Weight, Size - - 
Heart Rate HR sound (stethoscope), pulse 

reading, bedside monitor 
Breathing Rate RR chest movement, sound, 

bedside monitor 
O2 concentration Col pink, blue (central or 

peripheral cyanosis) 
Blood Pressure - - 
Condition of the lung vessels - - 
Foetal lung fluid level - - 
Blood pH - - 
- Mov movement, sounds (crying) 

Manual Control over OSVs - Mentor's Control Panel 

In the current version of our training system it is the sole 
responsibility of the mentor (training supervisor) to control 
the values of all observable state variables. This can be done 
using a separate Java dialog (not seen by a trainee) shown in 
Fig. 3. The main controls there are sliders for setting the 
values of OSVs. Transitions from the current to newly set 
values will  usually not be instant and abrupt in order to 
achieve realistic impression, therefore the transition time 
should be set with every change. During this time (500 
seconds max.) smooth, linear transition from the current to 
the specified final value will occur. Parameter value starts to 
change after clicking the corresponding Send... button. This is 
registered in the system as an event. 

It would be, of course, very difficult for the mentor to 
control and manually set every variable during the training. 
To overcome this difficulty we have implemented support for 
the predefined lists of events, called scenarios. 

Event Scenarios 

Scenarios are plain text files in which each line describes 
one event in the system. Events represent changes of the OSV 
values, format and some examples are in Table II. Mentor can 
load and start any of the predefined scenarios, scenarios can 
also be loaded automatically as responses to student actions. 

TABLE II 
EXAMPLE OF THE EVENT SCENARIO  

Time
[in sec]

Parameter 
ID 

Final parameter value 
or percent of change 

Time to reach the final 
value [in sec] 

1 RR 12 1 

1 Col 0.2 1 

10 HR 150 30 

15 Col -10% 10 

60 Mov +20% 20 

 

Fig. 3: Mentor's control panel for manual setting of OSVs. 

Audio-Visual Representation of the Virtual New-born Baby 

Graphic and auditory representation of our virtual baby is 
implemented in VRML [4]. 3D description of the baby avatar 
is stored in nodes of a scene graph according to H-ANIM re-
commendation [5]. Values of OSV are sent from Java appli-
cation via the External Authoring Interface (EAI). Most of the 
dynamics needed for representing movements, changing of 
colour and sounds is built using Java scripts and VRML 97 
interpolators and message routing mechanism (Fig. 4). 
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Fig. 4: Used programming technology 



IV. LINKING VARIABLES FOR EASIER MANUAL CONTROL 

Even with predefined lists of events thinking of each and 
every OSV separately is neither easy nor natural way for a 
mentor to control and think about the virtual model of a baby. 
Smarter and easier control would be necessary to further 
improve didactical possibilities of such training. 

Physiological Model 

We have spent quite some time thinking about the physio-
logical model, which would correctly describe all interdepen-
dencies between the listed variables. But after we have had 
already specified some parts of the complete system, as for 
example neonatal heart rate mechanism in Fig. 5, we 
abandoned the idea of physiological modelling due to its 
tremendous complexity. We decided to simplify the inner 
mechanisms of the virtual baby by adopting less sophisticated 
model which takes into account a single control variable. 

One-Parameter Description 

This simplified model can be reasonably justified from the 
physiological point of view if we directly relate our 
governing parameter to the oxygen level in the blood (O2). In 
such case the overall complexity of the central nervous 
system (CNS) is covered by a black-box abstraction as seen in 
Fig. 6. Our task is to specify  relations between O2 Level and 
observable state variables (HR, RR, Col and Mov). 
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Fig. 5: Neonatal Heart Rate 
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Fig. 6: 'Black-box' relationship between the model governing parameter (O2 
level) and observable state variables (HR, RR, Col, Mov). 

 Implementation with Partly Linear Relationships 

To avoid direct reference to physiology we named the 
single control variable Health Index (HI) in our programming 
implementation. Its value is in the range [0,1] and the 
relations HR(HI), RR(HI), Col(HI) and Mov(HI) are 
described with segments of linear functions - polylines. We 
call them OSV Lookup Tables (LTs) and they can be set 
arbitrary for different training cases, example is in Fig. 7. 

 

Fig. 7: Partly linear relations between the control variable HI and OSVs. 

V. SOFTWARE FOR  MODEL TUNING AND VALIDATION 

Mentor can create and tune this relations using an 
independent piece of software - VIDERO Simulator and 
Animator. After setting the relations of OSVs vs. HI in the 
first window one can interactively specify the trajectory of 
the HI over time (bottom graph in Fig. 8) and obtain 
corresponding graphs for each of the four OSVs (upper four 
graphs in Fig. 8) in the second window. This can be done 
either in real or simulated (faster) time. 



 

Fig. 8: Graphs of OSVs versus time according to the HI trajectory 
(bottom graph) and corresponding LTs. 

If real time is chosen the animated audio/visual 
representation of the vital signs can be monitored in the third 
window during simulation (Fig. 9). In case the trajectories are 
generated in faster time, simultaneous animation of vital signs 
can not be generated, but the complete course of animation 
can be played back afterwards in real time. During the 
animation numeric values of all parameters are also 
displayed. 

With the described tool a neonatal resuscitation specialist 
should be able to construct close-to-realistic behaviour of a 
virtual baby for certain physiological conditions. Defined LTs 
and HI trajectories can be automatically saved as set-up and 
scenario files for the target virtual training environment, 
which will then be used during simulated training. 

VI. CONCLUSION 

We have described the idea and our prototype system for 
neonatal resuscitation training using computer-generated 
multi-user virtual environment built with VRML and Java. 
Avatar of a new-born baby was made to represent essential 
vital signs which a student should continuously assess and 
then properly react according to them. Values of these 
observable variables can be directly controlled by the mentor, 
who can also prepare lists (scenarios) of discrete events to 
define their trajectories in advance. 

The major drawback of the current implementation is that 
each vital sign is treated separately, which obscures the 
clarity of the virtual baby behaviour and makes control over it 
difficult. To overcome this we have designed a scheme of 
partly linear relationships with respect to only one control 
variable. In physiological terms this single control variable 
can be approximately related to the oxygen level in the blood. 
One can, of course, argue that this model is too simplistic 

compared to the whole complexity of real physiological 
processes. This is true, however the advantage of having a 
possibility to govern four variables by only one control value 
during the supervised training is way more important than 
possible slight deviations from the accurate physiological 
behaviour of a real baby. After all - this behaviour is assessed 
by the student from the synthetic 3D audio/visual 
representation where scale of errors during the assessment is 
by far larger than deviations caused by the model itself. 
Considering the later fact the benefits of the introduced model 
are greater then the lost degree of freedom compared to 
manipulating each parameter separately. 

The presented approach is fine for the purpose of our 
training supervised by a mentor according to the idea in Fig. 
2. But in case we would want to create an autonomous tool 
for unsupervised training this mechanism should be further 
developed and upgraded with a kind of a medical expert 
system. Some of our current efforts are aimed to explore this 
topic also. 
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Fig. 9: Animation window of the VIDERO Simulator & Animator program. 
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